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We present new results from modeling the magnetoimpedance (MI) effect, which considers explicitly the experimentally observed
stripe domain structure in MI ribbon elements. Specifically, we solve the Maxwell and the Landau–Lifshitz–Gilbert equations formu-
lated in such a way that includes an a priori known equilibrium magnetization. The equations are solved numerically for the real and
imaginary parts of the magnetic field and magnetization simultaneously using a meshless method formulated in a point collocation
scheme. Contrary to other models that have treated domain walls in a lumped parameter approach, we investigate the effects of the
experimentally observed 180 Neel walls directly. Additionally, resulting MIR values are computed and compared to published exper-
imental data and the case ignoring domain structure for the amorphous ribbon. It is shown that the presence of the observed domain
structure leads to greatly reduced MI voltages, and contributing mechanisms are discussed. Moreover, the results have a broader impact
applying to other harmonic magnetic structures with and without 180 Neel walls.

Index Terms—Coupled harmonic micromagnetics, domain wall, magnetoimpedance (MI), meshless methods, MI sensor, micromag-
netics, Neel wall.

I. INTRODUCTION

M AGNETOIMPEDANCE (MI) effect sensors represent
a class of alternative low-cost highly sensitive magnetic

field detectors that have accordingly attracted much attention
in recent years. In earlier studies with amorphous Co-based MI
sensors, absolute resolution measurements yielding values on
the order of T for steady fields and T for ac fields
were demonstrated [1]. Many MI sensor applications have been
suggested in [2]. Interests to extend MI sensor resolution for po-
tential applications (such as detection of human neural signals
on the order of T [3]) have motivated research leading to
a better understanding of MI behaviors, and more importantly
to accelerate the pace of MI sensor advancements. This paper
numerically investigates the effect of a magnetic domain struc-
ture in a MI-element subjected to harmonic conditions due to an
ac current source.

In early MI sensor research, domain structures have not unan-
imously been considered as playing an influential role in the MI
effect. For example, in [4] it was suggested that domain wall
motion is sufficiently dampened for an operating frequency of
1 MHz and therefore, there may be no need to consider domain
walls in modeling efforts [4]. Similar remarks have been put
forth by others [5]. However, some experimental evidence has
also been presented at lower frequencies, for example, in amor-
phous ribbon elements that suggest domain walls play a sub-
stantial role in the MI effect [6]. Additionally, the influence of
Neel walls by way of decoupled linear models in relation to the
MI effect in ribbons has been discussed in [7] as well as their
connection to anisotropy and experimentally determined effec-
tive permeabilities [8]. An improved understanding of the role
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of domain structure also aids in interpretations from extended
structures, which have also been investigated (for example, in
circular composites and multilayered ribbons [9]). Neverthe-
less, the existence of a domain structure in MI elements has
been confirmed in both amorphous near-zero magnetostriction
ribbons and wires [10], [11]. Observations using magneto-op-
tical Kerr effect techniques [11] have shown experimentally that
Co-based amorphous ribbons possess the so-called “striped” do-
main structure with 180 Neel walls. While these experimental
observations of domain structures offer valuable insights, it is
also desired that the information from these experimental find-
ings can be used in analytical predictions in order to facilitate
MI sensor designs.

In [12], we offer a general harmonic formulation (taking into
account explicitly the effects of micro-magnetics) for modeling
the magnetic fields in structures like the MI element. While re-
laxing assumptions commonly made in the literature, this cou-
pled nonlinear model provides a means to explicitly solve the
Maxwell and the Landau–Lifshitz–Gilbert (M-LLG) equations
simultaneously for the real and imaginary parts of the magnetic
fields and magnetization. This paper exploits the harmonic cou-
pled nonlinear formulation to accommodate a domain structure,
particularly when experimental observations have been made.
Specifically, we numerically investigate the effects of the Neel
walls on the MI effect.

The remainder of this paper offers the following.
1) We offer a means to accommodate a prior knowledge of an

equilibrium domain structure in the coupled set of M-LLG
harmonic equations [12] so that the effects of the 180 Neel
wall on the inductive voltage across an amorphous ribbon
MI element can be analytically investigated.

2) The harmonic formulation (with domain wall considera-
tions for a MI ribbon) is solved numerically using a point-
collocation meshless method (PC-MLM) for the magnetic
field intensity and magnetization. The PC-MLM algorithm
has been validated by comparing solutions to the nonlinear
180 Bloch wall problem that has an exact solution. In ad-
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Fig. 1. Co-based amorphous ribbon domain structure and unit periodic “slice.”

dition, we examine factors that significantly influence com-
putational convergence and time with a Galerkin finite ele-
ment method (FEM) that serves as a basis for comparison.

3) Using the validated PC-MLM, we investigate the effects
of the striped domain structure directly on the MI effect by
comparing the coupled nonlinear model with and without
the domain structure, and against published experimental
results. As will be discussed along with the computed re-
sults, the presence of the 180 Neel walls has an effect of
reducing the inductive voltages in MI ribbon sensors.

With this, the discussion takes the following format: first, the
approach for considering the domain structure explicitly is dis-
cussed; then the model formulation is outlined followed by a dis-
cussion of calculated results. Finally, we conclude with a sum-
mary of observations.

II. DOMAIN-WALL EFFECT CONSIDERATIONS

We consider here a MI sensor consisting of an alternating
input current source across a magnetic ribbon (thin rectan-
gular amorphous wire) in the presence of relatively weak ex-
ternal magnetic field intensity . The domain structure for
the ribbon materials in MI elements at steady (or equilibrium)
state has been observed experimentally and is known to possess
stripe domains, given by alternating transverse domains sepa-
rated by Neel walls. The experimentally observed domain struc-
ture is schematically illustrated in Fig. 1. The interest here is
to investigate the effects of the 180 Neel wall domain struc-
ture, both quantitatively and qualitatively (which have been ob-
served experimentally), on the inductive voltage induced across
the MI sensor. This is accomplished by solving the coupled set
of Maxwell’s and Landau-Lifshitz-Gilbert equations (MLLG)
for the magnetic field intensity and magnetization

(1a,b)

where is the measured dc external field; and is the har-
monic component (varying at the input frequency ) of the mag-
netic field due to . The magnetization has a similar form
given by (1b) where is the (location-dependent) equilib-
rium magnetization; and is the unknown harmonic devia-
tion from equilibrium.

Equation (1b) provides a means to accommodate a prior
knowledge of an equilibrium domain structure, given as ,
that has been observed experimentally. Generally, the equilib-
rium magnetization is quantitatively described by [13]

(2a,b)

where is the saturation magnetization and is the total
effective field vector defined by

(3)

where and are the effective fields taking into ac-
count anisotropy, exchange, and demagnetization, respectively,
and is the total external field expressed in (1a). An explicit
solution to (2) is nontrivial for MI elements. However, observa-
tions in amorphous Co-based ribbons provide qualitatively a do-
main structure for the amorphous low-magnetostriction MI
element wires. We model analytically in accordance with
the observed periodic nature of the equilibrium structure (Fig. 1)
using a general, unit periodic-slice of length . In addition, the
following assumptions (with the aid of Fig. 1) are made.

i) Domain structure is uniform in the direction.
ii) component of the equilibrium magnetization is

negligible.
iii) Neel wall is narrow and its influence vanishes towards the

domain center. Thus, in the unit slice sufficiently far from
the wall, variations are only in .

Based on these assumptions, remains in the - plane
and its -component is given by the constraint

Then, the transverse component assumes the following form:

(4)

where and describe the dependence on the
Neel wall variation and the external field respectively.

As will be shown, (1)–(4) offer a practical way to intuitively
study the effects of the observed domain walls in relation to
all the field components predicted using the coupled nonlinear
harmonic MLLG equations.

A. Analytic Neel Wall

The Neel walls introduce variations along the direction. In
regions within the unit slice but sufficiently far from the Neel
wall centerline

(5)

The boundary conditions (5) suggest that the variation due to
the Neel walls can be described by the function (6)

(6)

where the parameters, and , provide a means to scale the
wall width and to locate the wall center respectively; and is
the characteristic length scale for the domain wall width.

B. Dependence Factor

The dependence of on , in the absence of time varying
fields, can be derived from (2) considering only the dc external
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and anisotropy fields (normalized to ), as they dominate the
effective field in the problem considered

(7)

With a known anisotropy direction and negligible compo-
nent equilibrium magnetization, (7) leads to an explicit function
of the transverse magnetization component in terms of the
external field

(8)

As will be shown with numerical results, the amplitude ratio
has a significant influence on the magnetization and

hence the MI induced voltages.

III. COUPLED NONLINEAR HARMONIC FORMULATION

For a MI element subjected to an ac current source and a dc
external field, and are represented as the sum of steady
and ac components given by

(9a)

(9b)

The subscripts “ ” and “ ” denote the real and imaginary parts.
The Neel wall domain structure in (4) can now be accounted for
directly in the coupled nonlinear harmonic formulation based
on the Maxwell’s and the Landau–Lifshitz–Gilbert (LLG)
equations.

The coupled set of nonlinear harmonic PDEs is given by
(10)–(12). Specifically, (10a,b) are equations for the magnetic
field intensity within the ribbon MI element

(10a)

(10b)

where is the bulk electrical conductivity and is the per-
meability of free space. Similarly, in harmonic vector form the
modified form of the LLG equation governing the magnetiza-
tion “motion” are given by (11a, b), [12]

(11a)

(11b)

where is the gyromagnetic ratio. In (11a,b), and are
the real and imaginary components of

(11c)

Similarly, and are the real and imaginary parts of

(11d)

where is the unit vector in the direction of the material pre-
ferred anisotropy; is the first anisotropy constant; and is
the exchange stiffness. The last term in (11d) accounts for the
effects of demagnetization described by

(12a,b)

A. Boundary Conditions (BCs)

The computational model considers variations in the -
plane with a periodic domain structure. The BCs for the
component are given by (13) and (14), where (14g) assumes
the free spinning condition at the surface

(13)

(14a,b)

(14c,d)

(14e,f)

(14g)

(14h)

Note that the field intensity at the interface can be
obtained by integrating Amperes law over the cross-sectional
area because of the current source, which leads to (14).

The observed periodic nature with assumption iii) on rela-
tively narrow walls suggests that the solutions at the bound-
aries approach the solution to the 1-D model that has a uniform
domain structure, keeping all other parameters the same. Thus,
a high density solution of the 1-D problem is enforced at the
axial ends of the slice

(15)

It is noted that from (15), aside from a collapsed model only
varying in , at (left end), and
the oppositely oriented equilibrium state exists at .
Thus, the only difference in the 1-D model at each slice
boundary is the local equilibrium magnetization orientation.
Due to the consistency of the 1-D and 2-D equations, and the
boundary conditions, the formulation discussed above avoids
the need for special considerations at the corners of the compu-
tation domain, which has been discussed in [14].
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B. Calculations of MI Ratio (MIR)

Once the magnetization and field intensity are known,
the MI inductive voltage can be calculated by

(16)

where is the flux crossing area in the - plane of the ribbon.
Adding the ohmic voltage for the total MI voltage, , the MI
ratio (MIR) in percent is then found from

% (17)

IV. NUMERICAL CONSIDERATIONS

The coupled set of harmonic equations (with domain wall
considerations for a MI ribbon) is solved numerically using a
point collocation meshless method (PC-MLM). Motivated by
the interest to perform all simulations on a desktop PC we base
the model on the observed periodic Neel wall enabling a re-
duction of the computational domain to a general unit slice of
length, (see Fig. 1). This eliminates the need to model all the
magnetic domains (which are many) along the entire length of
the ribbon, and hence greatly reduces computational demands.
In addition, we examine factors influencing the convergence and
computational time of the PC-MLM. In the following discus-
sions, the computations were based on a desktop Pentium IV
PC (3.5 GHz, 3.5 GB-RAM),

A. PC-MLM Validation and Computational Effectiveness

The PC-MLM numerical algorithm is validated by comparing
solutions to the nonlinear 180 Bloch wall problem that has an
exact solution given in Appendix A, where is the indepen-
dent variable. Here, the angle distribution that minimizes
the system energy is computed. In addition, we evaluate the fol-
lowing two shape functions (Appendix B and C) in PC-MLM
for their rates of computational convergence

• Hp cloud shape functions (HP-PC) [15], [16];
• Radial basis functions (RBF-PC) [17].
For this, a Galerkin finite-element method is employed to

serve as a basis for comparison. The following terms are used
in evaluating the convergence of the algorithms.

• Energy norm,
• Incremental approximate error,
• Computation time T normalized to the longest time

of all computation cases being compared.
The exact solution and minimized energy profile across the

wall are given in Fig. 2, where is normalized to the character-
istic length for the wall width (see Fig. 9). With
a sufficient number of nodes and iterations, all three numerical
algorithms (HP-PC, RBF-PC, and finite-element method) con-
verge to the exact solution. The comparisons are presented in
Fig. 3, where min corresponding to the finite-el-
ement method computation with 115 nodes (or 57 of second-
order elements). From results of the 180 Bloch wall model,

Fig. 2. Exact solution to the 180 Bloch wall problem (Appendix A).

Fig. 3. Convergence of 180 Bloch wall solutions.

the HP-PC formulation is chosen based on the following obser-
vations.

• The PC-MLM converges to an acceptable error faster than
finite-element method with a lower computation time. This
observation is similar to that published in [14] where a
(noninterpolating) reproducing kernel particle shape func-
tion was used in a PC-MLM for solving linear magnetic
problems.

• The comparisons show that the HP-PC converges slightly
faster than the RBF-PC. This observation is likely due to
the compactness of the Hp-Cloud shape functions used
here leading to a more diagonally dominant Jacobian ma-
trix, where RBF shape functions using thin-plate splines
are generally not compact (Appendix C).

B. Nonlinear Solver Based on Quasi-Newton Method

Newton’s method has been a principal tool for solving a
system of nonlinear equations, which is generally quadratic
in convergence. However, it is required to compute, at each
iteration, a Jacobian matrix and inverse. For the 2-D problem
considered, each node has 14 degrees of freedom (real and
imaginary components of vectors , and scalar ).
The total number of functional evaluations and arithmetic
operations for each of the iterations is approximately given by

(18)

where is the number of computational nodes; and the term
, which denotes on the order of , often dominates.

To reduce the computation cost for the 2-D MI element
model, a quasi-Newton method known as Broyden’s method
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TABLE I
VALUES OF THE PARAMETERS USED IN SIMULATION

Fig. 4. Newton and Broyden comparisons (2-D ribbon model; ��� � �� ).
(a) convergence of f(x) and (b) solver computation time, T.

[18] with an optimized line search [19] has been deployed
here. The Broyden’s method replaces the Jacobian matrix in
Newton’s method with an approximate “updated” matrix (see
Appendix D). While the quadratic convergence of Newton’s
solver is lost to superlinear convergence, the quasi-Newton
method requires and as will be shown in the 2-D solu-
tions, the Broyden update scheme offers a more than acceptable
trade-off for the time savings.

Case Study Example: To illustrate this trade off, we com-
pare the quasi-Newton method with a Broyden update scheme
(given in Appendix D) against the Newton’s solver for the 2-D
MI ribbon element model. Listed in Table I, the values of the pa-
rameters used in the simulation have been based on [6] for a 40

m thick amorphous ribbon element subjected to an ac current
source ( mA, kHz), so that comparisons can be
made against published experimental data. The parameters,
and , from the analytic domain structure (4) are also included
in Table I.

In Table I, was computed using the volume compo-
sitional average based on published values for Co and Fe
[20] for the experimental material, Co Fe Si B . The
preferred anisotropy direction is assumed uniformly transverse
throughout the ribbon . The gyro-magnetic
ratio is given (in SI units) by [21], where the
g-factor is the electron charge; and is the electron
mass. The characteristic length scale used here is given by

(19)

Using Table I, J/m and m.
Fig. 4 illustrates the tradeoff between convergence and

computation time when using a quasi-Newton method with
a Broyden update scheme in the 2-D ribbon solution. Both
methods (direct Jacobian computation and Broyden’s update)
use an optimized line search. The convergence and compu-
tation time are compared for and
11 11 nodes, which corresponds to 350, 686, 1134, and 1694

Fig. 5. Nonlinear and linear 1-D solutions to � (�� � T, and � � �). (a)
Real component of � and (b) imaginary component of � .

unknowns (since each node has 14 degrees of freedom; real and
imaginary components of and ).

As shown in Fig. 4, the Broyden’s update scheme takes signif-
icantly more iterations to converge (Fig. 4(a)). However, when
the degrees of freedom become large, the reduction of functional
evaluations from to saves considerable computa-
tion time as demonstrated in Fig. 4(b) where is the
total number of unknowns. Thus, the quasi-Newton method with
the Broyden’s update scheme is deployed in the remaining prob-
lems considered.

V. RESULTS AND DISCUSSION

Three sets of solutions have been numerically obtained for
the 2-D MI ribbon element (Case Study Example in Section IV
with values listed in Table I); linear 1-D model ,
1-D nonlinear model, and 2-D coupled nonlinear model.

A. Linear Model

For the case of vanishing , the 1-D model converges to the
exact solution [22] for linear in a ribbon

(20)

Using the boundary condition specified in (14c, d), the constant
is determined to be 5. The first set of solutions for a very

small in the absence of external field is given in
Fig. 5, where the exact solution for linear (20) serves as a
basis for validating the 1-D nonlinear model.

B. 1-D Boundary Model at

The coupled nonlinear model utilizes a 1-D solution as a
boundary condition (15). For this, the 1-D coupled nonlinear
model (75 nodes) is solved at both ends of the slice
where the respective equilibrium domain structures are given
by (5). Unlike (20), this 1-D model (in ) accounts directly
for both and the alternating 180 equilibrium magnetization
while keeping the transverse anisotropy uniform throughout the
structure.

As will be discussed, the maximum MI voltage occurs when
for transverse anisotropy in MI ribbons. Hence,

the second solution set (Fig. 6) simulates (both magnitudes and
phases of) and in the MI ribbon for .
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Fig. 6. 1-D Solutions of MI ribbon element �� � ���. (a) � solutions and
(b) � solutions.

C. 2-D Coupled Nonlinear Harmonic Solutions (With Neel
Walls)

With the 1-D boundary solution, the third solution set simu-
lates the effect of and using the 2-D coupled non-
linear harmonic model which explicitly accounts for the domain
wall effect (4). The 2-D solutions were solved using 17 17
nodes for the and components, and are presented in
Figs. 7(a) and (b).

To illustrate the effect of a small on the MI ratio, two
additional data at 0.6 and 0.1 were computed. The am-
plitude surfaces of the transverse and are shown in
Figs. 7(b), (c), and (d) for all three values of external fields

and 0.1, respectively).
The MI ratios are compared in Table II against published ex-

perimental data [6] that serves as a basis for comparison, and
the 1-D coupled nonlinear solution ignoring domain structure.

D. Observations and Discussions

The following observations are made from the results
(Figs. 5–7 and Table II).

a) Table II shows that the 2-D coupled nonlinear model
(Section III) with the domain structure (4) leads to pre-
dictions much closer to experimental data [6] than the
1-D solution ignoring domain structure. These results
suggest that the Neel walls play an influential role in
reducing the MIR in MI ribbons. The discrepancies
between experimental data and 2-D numerical results in
Table II may partly be due to a) the simplified treatment
of the variation and b) the sizing differences between
the domains along the axis, where equal sized domains
have been assumed.

b) As shown in Figs. 5 and 6(a), except at the boundary
condition (at ) the linear decoupled model (20)
departs from the coupled nonlinear 1-D boundary model
(15) that provides a means to include different equi-
librium states. The influence of can be
seen in the magnitude and phase of the solutions. As
graphed in Fig. 8, the alternating orientation of

along the ribbon contributes to

Fig. 7. 2-D solutions of MI ribbon element. (a) � for � �� � ����,
(b) � for � �� � ����, (c) � for � �� � ���, and (d) � for
� �� � ���.

TABLE II
MIR COMPARISONS

• 180 phase difference between and
;

• slight magnitude difference between
and .

The asymmetry in magnitude may be explained as fol-
lows. As a result of the alternating orientation of the do-
main structure, the induced currents (described by Am-
peres law) have equal and opposite signs on the right and
left sides of the unit slice; this leads to equal and oppo-
site gradients of along within the ribbon. Conse-
quently the presence of the (real) current “shifts” the
real component distribution [Fig. 6(a)] away from 0
at the surface on both sides creating the asymmetry indi-
cated in Fig. 8(a). Similar (but nonlinear) asymmetry can
be seen in the magnitude in Fig. 8(b).
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In addition to the influence of on the edges of the slice
(discussed above), Fig. 7 shows that the Neel wall appar-
ently provides ripe conditions for an analogous transition
between the harmonic components deep in the domain in-
terior, represented as the edges of the slice. The effect of
the Neel wall that can be seen in all components shows
that the solutions, in general, depend on the presence of a
domain structure.

c) Fig. 7(a) shows that the distributions develop in both
and as the amplitude ratio approaches 1. Re-

ducing or increasing relative to unity display sim-
ilar behaviors. In a weak field below the anisotropy field

, the amplitudes rapidly decrease
as goes from 1 to 0 as shown in Figs. 7(b) to (d).
In fact, the amplitude when is an order
of magnitude smaller than that when , and
nearly vanishes when . Physically, the de-
crease in amplitudes with in MI ribbons can be
explained by broadly dividing the amplitude ratio
into three regions; , and .
• When , the magnetization is firmly ori-

ented by the transverse anisotropy field, , (as it dom-
inates at 478 A/m) in the very weak field region. As

A/m, the magnetization is less sensitive to
under these transversely dominant conditions.

• When (along z) approaches in amplitude, this
creates conditions that reorient more along the
direction increasing the sensitivity to the transverse al-
ternating field up to a cutoff point near .

• Beyond the anisotropy field, the magnetization aligns in
a more stable configuration along , and as

, an analogous stable configuration develops along .
d) The presence of an axial component relative to the trans-

verse component may contribute to the ob-
served larger amplitude oscillations for the MI configura-
tion generating larger voltages. This is consistent with ob-
servations in [12] where relatively large MI induced volt-
ages are seen in the circular wire with completely axially
oriented domains and much smaller anisotropy. It is also
interesting to note that the highest sensitivities (between
ribbon and circular elements) reported in MI sensors have
been in circular wires which have either no Neel walls
(composites) or smaller volumes occupied by Neel walls,
while the rest is aligned axially in the circular amorphous
wires [10]. These observations may be related.

e) As shown in Fig. 7, a large portion of the ribbon largely fa-
vors the boundary solutions. The Neel wall region, though
accounts for a relatively small areal region where varia-
tion along occurs, leads to magnetic flux cancellation
over the ribbon. Thus, the domain structure with Neel
walls has an effect to reduce the inductive voltage (over
the length of the ribbon along the axis).

VI. CONCLUSION

We have presented results modeling numerically the exper-
imentally observed stripe domain structure in MI ribbon ele-
ments. This has been enabled by use of a MLM point collocation

Fig. 8. Effects of� �� � ��� based on 1-D boundary model �� � ���.
(a) Magnitude and phase of � �� � ��� and (b) magnitude and phase of
� �� � ���.

formulation along with a selective Broyden nonlinear scheme to
solve the proposed model. The algorithm has been validated by
comparing solutions to the nonlinear 180 Bloch wall problem
that has an exact solution as well as published experimental data.

The effects of the Neel walls and the amplitude ratio
on the magnetization and on the MIR of a 2-D MI ribbon have
been numerically investigated. Results from the 2-D coupled
nonlinear model with domain structure not only show quantita-
tive effects consistent with prior works, but also indicates a rad-
ical departure, qualitatively, from decoupled classical models in
that influence of the domain structure itself has been shown to
influence both the magnetic field intensity, as well as the mag-
netization amplitudes. This distinction leads to a peculiar flux
reduction mechanism resulting from oppositely oriented oscil-
lations in the ribbon due to the Neel walls that effectively re-
duces the voltage drop across the axis of the ribbon. This leads
to greatly reduced MIR values, much more consistent with pub-
lished experimental data.

We also note that these observations have been made in the
relatively small external field region , where
the domain structure is more “in tact” before saturation. Oth-
erwise, a linearized model offers a good approximation of be-
havior. Therefore, the role of the stripe domains that has been
summarized provide a mechanistic picture of the role of Neel
walls in MI elements, which is not possible to obtain readily
using a decouple model.

APPENDIX A
180 BLOCH WALL MODEL

Fig. 9 illustrates an 180 Bloch wall, where the magne-
tization remains in the plane normal to as its orientation
changes from to . The total magnetization energy of
an 180 Bloch wall is given by the integral of the exchange and
anisotropy energies (per unity area) [22]

(A1)
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Fig. 9. Classical 180 Bloch wall.

where is the angle of the equilibrium magnetization relative
to the anisotropy direction.

The equilibrium magnetization angle can be found by min-
imizing the energy using the variational form of (A1) or

, which leads to the following Euler-Lagrange equation:

(A2)

and is the characteristic length for the domain
wall width . For the uniform 180 domains with the two
Dirichlet boundary conditions, , the closed
form solution is given by

(A3)

APPENDIX B
SHAPE FUNCTIONS USED IN HP-CLOUD FORMULATED

PC-MLM

In MLMs, the approximated solution at point can
be written as

(B1)

where is the basis function; is the nodal control value at
the th node; and is a vector of basis function coefficients.
For a second-order polynomial-reproducible 2-D formulation,
the basis functions used in the -Cloud shape
functions [15], [16] are given by

(B2)

where represents a point from the local support do-
main which is a subset of the computational domain. Formu-
lated using a moving least square

(B3)

the elements of and matrixes are
given by (B4)

(B4)

where the weighting function in (B4) is given by

(B5)

where is the vector of unknowns, at each support node,
.

APPENDIX C
RADIAL BASIS FUNCTION USED IN PC-MLM

For the radial basis functions deployed in a formulation that
results in a partition of unity (POU), the approximation takes
the form [17]

(C1)

A linear system of equations is built by evaluating (C1) at all
local support nodes at all polynomial basis functions. This

process leads to the moment matrix defined by

(C2)

In (C2), the basis functions in the moment matrix are given by

(C3)

This leads to the solution for the basis function coefficients,
given by

(C4)

where is the radial basis function, where thin plat splines are
used [17], and is the monomial basis function similar to that
given in (B2).

APPENDIX D
QUASI-NEWTON METHOD USING BROYDEN UPDATE RULE

The quasi-Newton method has an update rule of the form

(D1)

where is computed using a Broyden update rule; and is
found from a line search by solving the optimization problem
defined by

(D2)

In (D1), can be computed from using the Sherman-
Morrison formula [18], eliminating the need for a matrix inver-
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sion with each iteration. The resulting inverted update matrix is
then given by

(D3)

where

(D4)

and

(D5)
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